If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4.9t^2+31t
We move all terms to the left:
0-(4.9t^2+31t)=0
We add all the numbers together, and all the variables
-(4.9t^2+31t)=0
We get rid of parentheses
-4.9t^2-31t=0
a = -4.9; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·(-4.9)·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*-4.9}=\frac{0}{-9.8} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*-4.9}=\frac{62}{-9.8} =-6+1/3.0625 $
| x^-6=0 | | 6b-3=79 | | 7(x-4)=4x-1 | | 57.6y-28.8=48y | | 231n-143=44n | | 26x+5=60 | | 3x-58=35 | | -1/4+72=-2x+9 | | 324/x=x | | (6u−5)(9u−4)=0 | | 245/x=x | | 392/x=x | | -3(-7y+2)-2y=3(y-1)-1 | | 2x-72=-8x=18 | | 5=m×4+3 | | 12z-48=0.5 | | 3u=81-6u | | 15x+7=15x-4 | | 12z-48=10/20 | | x-48+x-359=x+28 | | 22/3(3x-2)=4/5(2x-3)-4/3 | | 12z-48=10z/2 | | 96/x=x | | 243/x=x | | 192/x=x | | 2x+28/2=1 | | (5d−4)=0 | | 1,2x+x=44 | | 150/x=x | | (8r+7)=0 | | 3(u+5)=-3(6u-8)+9u | | 2z+9+34=6z+10 |